Skip to contents

This function performs a Finlay-Wilkinson analysis of data classified by two factors.

Usage

gxeFw(
  TD,
  trials = names(TD),
  trait,
  maxIter = 15,
  tol = 0.001,
  sorted = c("descending", "ascending", "none"),
  genotypes = NULL,
  useWt = FALSE
)

Arguments

TD

An object of class TD.

trials

A character string specifying the trials to be analyzed. If not supplied, all trials are used in the analysis.

trait

A character string specifying the trait to be analyzed.

maxIter

An integer specifying the maximum number of iterations in the algorithm.

tol

A positive numerical value specifying convergence tolerance of the algorithm.

sorted

A character string specifying the sorting order of the estimated values in the output.

genotypes

An optional character string containing the genotypes to which the analysis should be restricted. If NULL, all genotypes are used.

useWt

Should weighting be used when modeling? Requires a column wt in TD.

Value

An object of class FW, a list containing:

estimates

A data.frame containing the estimated values, with the following columns:

  • genotype: The name of the genotype.

  • sens: The estimate of the sensitivity.

  • se_sens: The standard error of the estimate of the sensitivity.

  • genMean: The estimate of the genotypic mean.

  • se_genMean: The standard error of the estimate of the genotypic mean.

  • MSdeviation: The mean square deviation about the line fitted to each genotype

  • rank: The rank of the genotype based on its sensitivity.

anova

A data.frame containing anova scores of the FW analysis.

envEffs

A data.frame containing the environmental effects, with the following columns:

  • trial: The name of the trial.

  • envEff: The estimate of the environment effect.

  • se_envEff: The standard error of the estimate of the environment effect.

  • envMean: The estimate of the environment mean.

  • rank: The rank of the trial based on its mean.

TD

The object of class TD on which the analysis was performed.

fittedGeno

A numerical vector containing the fitted values for the genotypes.

trait

A character string containing the analyzed trait.

nGeno

A numerical value containing the number of genotypes in the analysis.

nEnv

A numerical value containing the number of environments in the analysis.

tol

A numerical value containing the tolerance used during the analysis.

iter

A numerical value containing the number of iterations for the analysis to converge.

References

Finlay, K.W. & Wilkinson, G.N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14, 742-754.

See also

Other Finlay-Wilkinson: fitted.FW(), plot.FW(), report.FW(), residuals.FW()

Examples

## Run Finlay-Wilkinson analysis on TDMaize.
geFW <- gxeFw(TDMaize, trait = "yld")
#> Warning: ANOVA F-tests on an essentially perfect fit are unreliable

## Summarize results.
summary(geFW)
#> Environmental effects 
#> =====================
#>   Trial     EnvEff SE_EnvEff   EnvMean SE_EnvMean Rank
#> 1 HN96b   25.61186  5.963951  481.7914   36.14588    3
#> 2 IS92a  182.26254  5.963951  638.4351   43.17104    2
#> 3 IS94a  -35.03765  5.963951  421.1446   36.28094    4
#> 4 LN96a -271.00666  5.963951  185.1862   50.51782    7
#> 5 LN96b -364.59899  5.963951   91.5981   59.74929    8
#> 6 NS92a  595.22993  5.963951 1051.3839   85.77817    1
#> 7 SS92a  -88.89999  5.963951  367.2847   37.82243    6
#> 8 SS94a  -43.56105  5.963951  412.6216   36.43858    5
#> 
#> Anova 
#> =====
#>                 Df    Sum Sq  Mean Sq   F value    Pr(>F)    
#> Trial            7 127771687 18253098 1753.1259 < 2.2e-16 ***
#> Genotype       210  13821018    65814    6.3212 < 2.2e-16 ***
#> Sensitivities  210   5178199    24658    2.3683 < 2.2e-16 ***
#> Residual      1260  13118797    10412                        
#> Total         1687 159889702    94778                        
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Most sensitive genotypes
#> ========================
#>  Genotype  GenMean SE_GenMean Rank     Sens   SE_Sens MSdeviation
#>      G091 510.4500   35.99027    1 1.440452 0.1308111    6109.574
#>      G194 521.4250   35.99027    2 1.427522 0.1308111    4836.093
#>      G055 616.8500   35.99027    3 1.418572 0.1308111    7160.220
#>      G042 561.3875   35.99027    4 1.397123 0.1308111   18919.353
#>      G103 510.8000   35.99027    5 1.389754 0.1308111    9408.329

## Create a scatterplot of the results.
plot(geFW, plotType = "scatter")


# \donttest{
## Create a report summarizing the results.
report(geFW, outfile = tempfile(fileext = ".pdf"))
#> Error in report.FW(geFW, outfile = tempfile(fileext = ".pdf")): An installation of LaTeX is required to create a pdf report.
# }